Incorporating FCM and Back Propagation Neural Network for Image Segmentation
نویسندگان
چکیده
منابع مشابه
Image Compression Using Back Propagation Neural Network
Image compression technique is used to reduce the number of bits required in representing image, which helps to reduce the storage space and transmission cost. In the present research work back propagation neural network training algorithm has been used. Back propagation neural network algorithm helps to increase the performance of the system and to decrease the convergence time for the trainin...
متن کاملImage Deblurring Using Back Propagation Neural Network
Image deblurring is the process of obtaining the original image by using the knowledge of the degrading factors. Degradation comes in many forms such as blur, noise, and camera misfocus. A major drawback of existing restoration methods for images is that they suffer from poor convergence properties; the algorithms converge to local minima, that they are impractical for real imaging applications...
متن کاملbreathomics for gastric cancer classification using back-propagation neural network
breathomics is the metabolomics study of exhaled air. it is a powerful emerging metabolomics research field that mainly focuses onhealth-related volatile organic compounds (vocs). since the quantity of these compounds varies with health status, breathomics assuresto deliver noninvasive diagnostic tools. thus, the main aim of breathomics is to discover patterns of vocs related to abnormal metabo...
متن کاملSAR Image Classification by Multilayer Back Propagation Neural Network
A novel descriptive feature extraction method of Discrete Fourier transform and neural network classifier for classification of Synthetic Aperture Radar (SAR) images is proposed. The classification process has the following stages (1) Image Segmentation using statistical Region Merging (SRM) (2) Polar transform and Feature extraction using Discrete Fourier Transform (3) Neural Network classific...
متن کاملNeural Network for Image Segmentation
Image analysis is an important requirement of many artificial intelligence systems. Though great effort has been devoted to inventing efficient algorithms for image analysis, there is still much work to be done. It is natural to turn to mammalian vision systems for guidance because they are the best known performers of visual tasks. The pulse-coupled neural network (PCNN) model of the cat visua...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Computer and Communication Technology
سال: 2014
ISSN: 2231-0371,0975-7449
DOI: 10.47893/ijcct.2014.1213